Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Hum Evol ; 190: 103498, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581918

RESUMO

The Homa Peninsula, in southwestern Kenya, continues to yield insights into Oldowan hominin landscape behaviors. The Late Pliocene locality of Nyayanga (∼3-2.6 Ma) preserves some of the oldest Oldowan tools. At the Early Pleistocene locality of Kanjera South (∼2 Ma) toolmakers procured a diversity of raw materials from over 10 km away and strategically reduced them in a grassland-dominated ecosystem. Here, we report findings from Sare-Abururu, a younger (∼1.7 Ma) Oldowan locality approximately 12 km southeast of Kanjera South and 18 km east of Nyayanga. Sare-Abururu has yielded 1754 artifacts in relatively undisturbed low-energy silts and sands. Stable isotopic analysis of pedogenic carbonates suggests that hominin activities were carried out in a grassland-dominated setting with similar vegetation structure as documented at Kanjera South. The composition of a nearby paleo-conglomerate indicates that high-quality stone raw materials were locally abundant. Toolmakers at Sare-Abururu produced angular fragments from quartz pebbles, representing a considerable contrast to the strategies used to reduce high quality raw materials at Kanjera South. Although lithic reduction at Sare-Abururu was technologically simple, toolmakers proficiently produced cutting edges, made few mistakes and exhibited a mastery of platform management, demonstrating that expedient technical strategies do not necessarily indicate a lack of skill or suitable raw materials. Lithic procurement and reduction patterns on the Homa Peninsula appear to reflect variation in local resource contexts rather than large-scale evolutionary changes in mobility, energy budget, or toolmaker cognition.


Assuntos
Hominidae , Animais , Quênia , Ecossistema , Evolução Biológica , Carbonatos , Arqueologia , Fósseis
2.
MethodsX ; 7: 100753, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32021816

RESUMO

To understand the rates at which soils form from bedrock, it is important to know the rates at which the bedrock surface lowers (the apparent erosion rate, which is assumed to be constant). Previous models that calculate apparent erosion rates using measured concentrations of cosmogenic radionuclides rely on the assumption that the bulk density of the soil which forms as a product of bedrock erosion either equals that of the bedrock itself or is constant with depth down the soil profile. This assumption fails to recognise that soils have significantly lower densities that might not be constant with depth. The model presented here allows for the calculation of isotopically-derived soil production rates, considering the bulk density profile of the soil overlying the bedrock surface. This calculator, which can be run both in MATLAB® and GNU Octave©, represents a novel and significant contribution to the derivation of soil production rates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...